

JAT-010-001107

Seat No.

B. B. A. (Sem. I) (CBCS) Examination

December - 2019

Business Mathematics - 01

(Old Course)

Faculty Code: 010

Subject Code: 001107

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70

Instructions:

- (1) Attempt all five questions.
- (2) Each question carries equal marks.
- (3) Figure to the right indicates marks.
- 1 (a) Explain the following terms:
 - (i) One one function
 - (ii) Many one function
 - (iii) Constant function.

(b) If
$$f(x) = x^2$$
, $g(x) = 5x - 6$ and $x \in \{2, 3\}$ prove that $f = g$.

OR

- 1 (a) Explain the following terms:
 - (i) Function
 - (ii) Power function
 - (iii) Domain of function.

(b)
$$F = N \to N$$
, $f(n) = \frac{n^2 (n+1)^2}{4}$ find $f(n) - f(n-1)$.

JAT-010-001107]

1

[Contd...

7

7

2 (a) Prove that
$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$
.

- (b) How many different words using all the letters of the word 'MAUNISH' can be formed? How many of them
 - (i) begin with M
 - (ii) begin with M and end with H.

OR

2 (a) Prove that
$${}^{n}C_{r} = \frac{n!}{(n-r)! \, r!}$$
.

- (b) A bag contains 4 white and 6 black balls. In how many ways selection of 2 balls can be made so that (i) Both are white balls (ii) Both are black balls (iii) Both are different colour?
- 3 (a) Find the value of $(\sqrt{5} + 1)^5 (\sqrt{5} 1)^5$.
 - (b) Find the middle term in the expansion of $\left(x + \frac{1}{x}\right)^{10}$.

OR

3 (a) Using the principle of Mathematical Induction prove that 7

$$1+2+3+\dots+ n = \frac{n(n+1)}{2}$$

(b) Find
$$S_n$$
 if $T_n = 2n^2 + 3n$.

4 (a) Prove that
$$S_n = \frac{n}{2} [2a + (n-1)d].$$
 7

(b) Find the sum of
$$72 + 70 + 68 + \dots + 40$$
.

OR

7

- 4 (a) Prove that $S_n = \frac{a(r^n 1)}{r 1}$.
 - (b) Obtain the sum of n terms of the series 7 $9 + 99 + 999 + \dots$
- 5 Attempt any four: 14

(1)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 4}$$
 (2) $\lim_{x \to 2} \frac{x^4 - 16}{x^3 - 8}$

(3)
$$\lim_{x \to 0} \left(1 - \frac{4}{x} \right)^x$$
 (4) $\lim_{x \to 0} \frac{7^x - 5^x}{x}$

(5)
$$\lim_{x \to \infty} \frac{x^3 - 4x^2 + 8}{(x^2 + 1)(2x + 3)}$$
 (6) $\lim_{x \to 3} \frac{\sqrt{1 + x} - 2}{x - 3}$